Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 917: 170434, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278266

RESUMO

Hydrothermal vents (HVs) and cold seeps (CSs) are typical deep-sea extreme ecosystems with their own geochemical characteristics to supply the unique living conditions for local communities. Once HVs or CSs stop emission, the dramatic environmental change would pose survival risks to deep-sea organisms. Up to now, limited knowledge has been available to understand the biological responses and adaptive strategy to the extreme environments and their transition from active to extinct stage, mainly due to the technical difficulties and lack of representative organisms. In this study, bathymodiolin mussels, the dominant and successful species surviving in diverse deep-sea extreme ecosystems, were collected from active and extinct HVs (Southwest Indian Ocean) or CSs (South China Sea) via two individual cruises. The transcriptomic analysis and determination of multiple biological indexes in stress defense and metabolic systems were conducted in both gills and digestive glands of mussels, together with the metagenomic analysis of symbionts in mussels. The results revealed the ecosystem- and tissue-specific transcriptional regulation in mussels, addressing the autologous adaptations in antioxidant defense, energy utilization and key compounds (i.e. sulfur) metabolism. In detail, the successful antioxidant defense contributed to conquering the oxidative stress induced during the unavoidable metabolism of xenobiotics commonly existing in the extreme ecosystems; changes in metabolic rate functioned to handle toxic matters in different surroundings; upregulated gene expression of sulfide:quinone oxidoreductase indicated an active sulfide detoxification in mussels from HVs and active stage of HVs & CSs. Coordinately, a heterologous adaptation, characterized by the functional compensation between symbionts and mussels in energy utilization, sulfur and carbon metabolism, was also evidenced by the bacterial metagenomic analysis. Taken together, a new insight was proposed that symbiotic bathymodiolin mussels would develop a "finetuning" strategy combining the autologous and heterologous regulations to fulfill the efficient and effective adaptations for successful survival.


Assuntos
Bivalves , Fontes Hidrotermais , Animais , Ecossistema , Antioxidantes , Enxofre , Sulfetos , Filogenia
2.
J Environ Sci (China) ; 126: 153-162, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503744

RESUMO

Millions of people in poor areas are still under the threat of fluoride contamination. How to effectively separate fluorine in water is an important step to reduce the ecological risk. In this paper, we performed a systematic DFT calculation focused on the defluorination behavior between the LiAl- and MgAl-LDHs. The results indicated that the LiAl-LDHs exhibited high chemical activity before the defluorination, because of the better electronic structure. After the defluorination, the LiAl-LDHs with adsorbed-F- were also more stable than the MgAl-LDHs. In addition, the existence of coordination covalent bond for the adsorbed-F- attached to the LiAl-LDHs was confirmed. This is an important reason for the high defluorination efficiency by the LiAl-LDHs. In addition, a series of weak interaction, including hydrogen bond and van der Waals interaction were also observed. Finally, a LiAl-LDHs with excellent fluoride removal properties were synthesized well by simple hydrothermal method. The results showed that our synthesized LiAl-LDHs with the capacity of 156.09 mg/g, could be effectively defluorinated in water. Notably, it surpasses most materials and has potential applications.


Assuntos
Fluoretos , Flúor , Humanos , Teoria da Densidade Funcional , Água
3.
J Environ Sci (China) ; 120: 125-134, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35623766

RESUMO

To meet the challenges posed by global arsenic water contamination, the MgAlMn-LDHs with extraordinary efficiency of arsenate removal was developed. In order to clarify the enhancement effect of the doped-Mn on the arsenate removal performance of the LDHs, the cluster models of the MgAlMn-LDHs and MgAl-LDHs were established and calculated by using density functional theory (DFT). The results shown that the doped-Mn can significantly change the electronic structure of the LDHs and improve its chemical activity. Compared with the MgAl-LDHs that without the doped-Mn, the HOMO-LUMO gap was smaller after doping. In addition, the -OH and Al on the laminates were also activated to improve the adsorption property of the LDHs. Besides, the doped-Mn existed as a novel active site. On the other hand, the MgAlMn-LDHs with the doped-Mn, the increased of the binding energy, as well as the decreased of the ion exchange energy of interlayer Cl-, making the ability to arsenate removal had been considerably elevated than the MgAl-LDHs. Furthermore, there is an obvious coordination covalent bond between arsenate and the laminates of the MgAlMn-LDHs that with the doped-Mn.


Assuntos
Arsênio , Poluentes Químicos da Água , Adsorção , Arseniatos/química , Hidróxidos/química , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 427: 127865, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34848069

RESUMO

To cope with the current serious arsenate pollution problem, a new ternary layered double hydroxides (LDHs) containing Ni, Co and Mn with good performance was developed, guiding by DFT calculations. First, Ni, Co and Mn were screened as the metal sources to constitute the LDHs, due to their high ionic charge density. Then, Ni(II), Co(II) and Mn(III)-O octahedra were selected as the primary units for structuring the LDHs, because of their good chemical activity. Meanwhile, the ratio of metals in the ternary LDHs, favoring for arsenate removal, was optimized at 1:2:1. In addition, the synergistic effect among various metals in the LDHs was considered. The results suggested that in the case of single doping, all three metals can act as the center to promote chemical activity independently. On the contrary, when combined together, there is only one unilateral active center. Moreover, the existence of ligand covalent bonds between arsenate and LDHs was confirmed. Finally, a promising new NiCo2Mn-LDHs with the maximum adsorption capacity of 407.23 mg/g for arsenate removal had been prepared.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Arseniatos , Hidróxidos , Poluentes Químicos da Água/análise
5.
J Hazard Mater ; 403: 123920, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264971

RESUMO

In order to remove and stabilize As(III) simultaneously from wastewater, a novel and effective method based on the in-situ formation of As(III)-containing Zn-Fe layered double hydroxides (ZnFe-As-LDHs) was developed. The influence of pH, Zn/Fe, Fe/As and adding rate on the formation of ZnFe-As-LDHs were investigated. Under the optimal conditions, the concentration of As(III) decreased from 100 to 0.13 mg/L and As leaching concentration of the ultimate sludge was 1.87 mg/L, which could meet the arsenic leaching criteria (5 mg/L) regulated by US EPA. Compared with the "ex-situ" sludge obtained by As(III) adsorbed on the pre-formed ZnFe-LDHs, the As(III) removal efficiency increased by 21.6 % and the stability of the sludge increased by 94.2 % on the in-situ formation of LDHs, which mainly attributed to 55.06 % oxidation of As(III) and co-precipitation of As with Zn and Fe. Additionally, a possible in-situ formation pathway for ZnFe-As-LDHs was illustrated. At the beginning of the process, non-crystalline ferric arsenate formed and then transformed to amorphous ferrihydrite as precursors, followed by the formation of LDHs. This work demonstrated that co-precipitating As with Zn and Fe in the wastewater to in-situ form LDHs exhibited excellent potential for removal and direct stabilization of As(III).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...